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1. INTRODUCTION

In recent years, adaptive allocation has been an important topic of research in sequential testing
procedures. Extensive research work has been done in adaptive sequential context [e.g. see Friedman
et al. (1981), Ivanova et al. (2000), Rosenberg et al. (2001), Berry et al. (1986) etc]. Compared
to fixed sample procedures, adaptive allocation reduces the average sample size required for testing
a hypothesis. This procedure is important in clinical trials since it can help reduce the number of
applications of the less effective drug so as to mitigate the ethical question of randomly assigning
an inferior treatment to volunteers. Moreover, adaptive allocation also increases the probability of
correct selection (PCS).

The main idea is to skew the allocation probabilities to alter the response history of patients
and, hopefully, increase the chance of a patient to receive the treatment that performs better in the
trials by more than 50%.
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In existing literature, many types of allocation rules have been considered. Historically,
equal allocation has been used because this invariant fixed sample rule turns out to be computa-
tionally easier whereas adaptive allocation turns out better not only from the ethical point of view
but may also result in minimal losses or even gains in power for experiments comparing the two
treatments.

Adaptive designs for clinical trials have been largely based on urn models. A popular
method is the Randomized-Play-The-Winner (RPTW) rule. In this method, an urn contains balls
representing two treatments (say, A and B). Firstly, a patient is assigned a treatment A(B) according
to the type of ball drawn. A success of a treatment results in the addition of a ball of same type
to the urn while failure results in addition of a ball of opposite color. Let NA,n be the number of
patients assigned to treatment A after n patients are assigned and NB,n = n−NA,n. If pA =P(success
of treatment A) and pB =P(success of treatment B), qA = 1 − pA, qB = 1 − pB, then the limiting
allocation is qA/qB, a measure of relative risk, as n→∞.

In Randomized-Play-The-Winner rule and other rules prior to Bhandari et al. (2007), the
ratio of allocation to the two treatments tends to a positive constant bounded away from zero as
the total sample number n tends to infinity. For the case of testing simple hypothesis in parametric
setup, Bhandari et al. (2007) has given Procedure I and Procedure II in which the said ratio tends
to zero. Moreover, the number of allocation to the less effective treatment tends to a finite number
even if the total sample number tends to infinity.

In this paper, we have considered the testing of composite hypotheses between any two
populations with sequential adaptive allocation with a fixed number of patients, and we have suc-
cessfully shown that we can make the expected sample size of one of the treatments to the order of
log n, i.e., E(NA,n)/ log n tends to a finite number both mathematically and by simulation studies.
All the procedures used here are permutation invariant and the allocation at each stage is based
on some function of the existing likelihood ratio or some other estimates arising out of it. At each
stage, we determine the optimal decision and allocate to the population which is preferred.

2. PRELIMINARIES : SIMPLE AND COMPOSITE HY-

POTHESIS

Two populations with probability density functions fθ0 , fθ1 (with respect to some σ-finite measure)
(fθ0 6= fθ1) are considered. The total sample size from the two populations is N which is preassigned.
We shall draw samples one by one in such a way that the population to be chosen at some stage
depends upon previous sample observations. At each stage n, let N0,n and N1,n be the number of
units drawn from fθ0 and fθ1 respectively and N0,n + N1,n = n. We stop when n = N and take a
decision according to an appropriate rule.

The simple hypothesis in this case would be H0: (fθ0 ,fθ1)=(f0,f1) Vs H1: (fθ0 ,fθ1)=(f1,f0).
The composite hypothesis in the above mentioned parametric setup would be H0: θ0>θ1 against
H1: θ1>θ0.

In this case, consider

LRn(0, 1) = log[Ln(x,H0)/Ln(x,H1)] (1)

LRn(0, 1|N0,n, N1,n) = log[Ln(x,H0|N0,n, N1,n)/Ln(x,H1|N0,n, N1,n)] (2)

where under Hi, Ln(x,Hi) and Ln(x,Hi|N0,n, N1,n) are the likelihood and conditional likelihood
respectively for the observations x and given sample numbers N0,n and N1,n at the stage n. We
describe the following procedures for testing the above stated simple and composite hypothesis.
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2.1. Procedure I

We consider likelihood ratio LRn(0, 1) as defined in (1) and at each stage n, we adopt the following
allocation rule:

if i) LRn(0, 1) > 0 we increase N0,n by 1.
if ii) LRn(0, 1) < 0 we increase N1,n by 1.
if iii) LRn(0, 1) = 0 1 unit observation is allocated to each population with

probability 1
2

each.
Finally, when n = N we accept H0 with probability 1 if LRn(0, 1) > 0 and with probability

1
2

if LRn(0, 1) = 0.
Now, for implementing this procedure we need to know the probability distributions of

N0,n and N1,n which may be very cumbersome leading to computational problems. Further, for
given values of N0,n and N1,n, the conditional distribution of the unit observations in x becomes
independent. Hence, it is easier to use LRn(0, 1|N0,n, N1,n) in place of the usual log-likelihood ratio.

2.2. Procedure II

For the same testing problem as in Procedure I, to define Procedure II we use the similar allocation
rule and final rejection/acceptance rule as in Procedure I, except that we use LRn(0, 1|N0,n, N1,n)
in place of LRn(0, 1). The rationale behind using the conditional likelihoods in the description of
Procedure II is that it not only makes computations simple but also gives consistency and results
very close to the optimal.

Both the above procedures were extensively studied in Bhandari et al. (2007) in the con-
text of testing the simple hypothesis in sequential adaptive test procedures. Now for testing the
composite hypothesis, we state the following procedure which is an extension of Procedure I using
LRn with plug-in values of θ̂0,n and θ̂1,n.

2.3. Procedure III

To test the composite hypothesis, we need information about the unknown parameters θ0 and θ1
in the Likelihood ratio function. So, we consider some suitably chosen efficient estimators θ̂0,n, θ̂1,n
(suitably chosen function of the order statistics in the relevant sample) of θ0 and θ1 respectively at
each stage n with certain properties:

i) E(θ̂0,n) = θ0, E(θ̂1,n) = θ1.

ii) V (θ̂0,n) ' c0/N0,n, V (θ̂1,n) ' c1/N1,n.

iii) θ̂0,n, θ̂1,n are asymptotically normal random variables having same support which contain
Θ, the set of all parameters. Here, c0 and c1 are positive constants, and N0,n and N1,n are number
of observations from fθ0 and fθ1 at stage n respectively. We also assume that θ0 or θ1 are not
supremum or infimum of the set Θ.

Now, we adopt the following allocation rule which is equivalent to using LRn with plug-in
values θ̂0,n and θ̂1,n:

if i) θ̂0,n − θ̂1,n > 0 we increase N0,n by 1.

if ii) θ̂0,n − θ̂1,n < 0 we increase N1,n by 1.

if iii) θ̂0,n − θ̂1,n = 0 1 unit observation is allocated to each population with
probability 1

2
each.

Finally, when n = N we accept H0 with probability 1 if θ̂0,n - θ̂1,n > 0 and with probability
1
2

if θ̂0,n - θ̂1,n = 0. The initial values of N0,n and N1,n are taken to be M(N) depending on N .
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With Procedure III, as defined above we prove the following Lemma.

Lemma 2.1. Under H0, as n→∞ , both N0,n and N1,n will tend to infinity and N1,n

N0,n
→ 0 a.e. as

PICSn →0 where M = o(logN) and M →∞.

Proof. Clearly, N0,n and N1,n tends to infinity as M →∞ and by Lemma 5.2 in the Appendix we
have PICSn → 0. Interpolating E(N1,n) as smooth increasing function of n we obtain PICSn '
dE(N1,n)

dn
(see proof of Theorem 3.1). For any δ > 0, a simple application of Markov’s inequality and

L’Hospital rule yields

P (N1,n > nδ) ≤ E(N1,n)

nδ
→ 0 as PICSn → 0

which implies
N1,n

n
→ 0 a.e., i.e.,

N1,n

n−N1,n

→ 0 a.e.

Therefore, N1,n

N0,n
→ 0 a.e.

3. MAIN RESULT

Our main result is stated in the following theorem.

Theorem 3.1. With the Procedure III as defined above with two populations having densities fθ0, fθ1
and having estimators θ̂0,n and θ̂1,n of θ0, θ1 respectively and satisfying properties (i),(ii),(iii), we
have as N →∞, M →∞ and M

logN
→ 0 :

E(N1,n)

logN
→ a positive constant c0(say) under H0

and
E(N0,n)

logN
→ a positive constant c1(say) under H1.

Proof. Under H0, i.e., θ0 > θ1 and by Lemma 2.1,

PICSn = P (θ̂0,n − θ̂1,n < 0)

= EN0,n,N1,n [P (θ̂0,n − θ0 − θ̂1,n − θ1 < θ1 − θ0|N0,n, N1,n]

' EN0,n,N1,n

Φ

 θ1 − θ0√
c0
N0,n

+ c1
N1,n


since

(
θ̂0,n − θ0 − θ̂1,n − θ1

)
∼ N

(
0, c0

N0,n
+ c1

N1,n

)
asymptotically by C.L.T.

With x > 0, we have the inequality(
1

x
− 1

x3

)
φ(x) ≤ Φ(−x) ≤ 1

x
φ(x) (3)

Now, √
c1
N1,n

≤
√

c0
N0,n

+
c1
N1,n

≤ max

{√
2c1
N1,n

,

√
2c0
N0,n

}
.
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Thus,

(θ1 − θ0)√
c1
N1,n

≤ (θ1 − θ0)√
c0
N0,n

+ c1
N1,n

≤ max

(θ1 − θ0)√
2c1
N1,n

,
(θ1 − θ0)√

2c0
N0,n

 as θ0 > θ1.

With the above inequality and (3), we have

EN0,n,N1,n



√

c1
N1,n

(θ0 − θ1)
−


√

c1
N1,n

(θ0 − θ1)

3
φ

(θ1 − θ0)√
c1
N1,n




≤ PICSn

≤ EN0,n,N1,n


√

2c1
N1,n

(θ0 − θ1)
φ

(θ1 − θ0)√
2c1
N1,n

+ EN0,n,N1,n


√

2c0
N0,n

(θ0 − θ1)
φ

(θ1 − θ0)√
2c0
N0,n



≤ 2EN0,n,N1,n


√

2c1
N1,n

(θ0 − θ1)
φ

(θ1 − θ0)√
2c1
N1,n


since N1,n

N0,n
→ 0 a.e. and both N0,n and N1,n →∞ by Lemma 2.1.

This implies,

EN0,n,N1,n

[
O(e−k1N1,n)

]
≤ PICSn ≤ EN0,n,N1,n

[
O(e−k2N1,n)

]
,

where k1 = (θ1−θ0)2
2c1

> 0 and k2 = (θ1−θ0)2
4c1

> 0.

Therefore, applying Jensen’s inequality

PICSn = EN0,n,N1,n

[
e−k0N1,n

]
≥ e−k0E(N1,n), (4)

where k0 is some suitable constant.

We have E(N1,n) = K +
∑n

i=n0
PICSi ; n0 is a small integer and K is a constant.

Approximating PICSi as a continuous decreasing function of i, we can write

E(N1,n) ' K +

∫ n

n0

PICSmdm. (5)

Using (4) and (5), we obtain

PICSn '
dE(N1,n)

dn
≥ e−k0E(N1,n)

which implies ∫ n

n0

ek0E(N1,m)dE(N1,m) ≥
∫ n

n0

dm

i.e.,
ek0E(N1,n) − ek0E(N1,n0 ) ≥ k0(n− n0).
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It follows,
k3e

k0E(N1,n) ≥ k4n,

where k3 and k4 are suitable constants. Hence,

E(N1,n) ≥ αlog(βn) for some constants α and β.

Let λn = E(N1,n). So, λn →∞ as n→∞. Also, λn is increasing in n.

Using Lemma 5.1 in appendix, we have (1 + δ)λn = (1 + δ)E(N1,n) ≥ V (N1,n).

Define an event Aλn =

{
λn − (λn)

1
4

√
λn ≤ N1,n ≤ λn + (λn)

1
4

√
λn

}
.

Therefore, Acλn =

{
|N1,n − λn| ≥ (λn)

1
4

√
λn

}
.

Applying Chebyshev’s inequality, we obtain

P (Acλn) ≤ V (N1,n)

(λn)
3
2

≤ (1 + δ)
λn

(λn)
3
2

=
1 + δ√
λn

.

Now, define Ax as Aλnx
where λnx ≥ x with nx being minimum integer , x ∈ R.

Therefore, P

(⋃∞
t=[λn∗ ]A

c
t4

)
≤
∑∞

t=[λn∗ ]
(1+δ)4

t2
→ 0 as n∗ →∞.

So, with suitable mi as i → ∞, λmi
= λni

4 ' i4 ↑ ∞ and mi → ∞ implies
N1,mi

E(N1,mi
)
→ 1 a.s.

Let mi ≤ k ≤ mi+1. So,
N1,mi

E(N1,mi+1
)
≤ N1,k

E(N1,k)
≤

N1,mi+1

E(N1,mi
)
.

Now,
N1,mi+1

E(N1,mi
)

=
E(N1,mi+1

)

E(N1,mi
)

N1,mi+1

E(N1,mi+1
)
→ 1 a.s.

since
E(N1,mi+1

)

E(N1,mi
)
' (i+1)4

i4
→ 1 as i→∞.

Similarly,
N1,mi

E(N1,mi+1
)
→ 1 as i→∞ almost surely. It follows,

N1,k

E(N1,k)
→ 1 as k →∞ a.s.

Hence, N1,n = O(λn) a.s.

From (4), we have PICSn = E
(
e−k0N1,n

)
= E

(
e−δλn

)
= e−δE(N1,n) for some constant δ > 0.

Again, approximating PICSn as a smooth continuous decreasing function of n, we write

PICSn '
dλn
dn

= e−δλn

which implies ∫ n

n0

eδλmdλm =

∫ n

n0

dm

i.e.,
eδλn − eδλn0 = δ(n− n0).
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Hence, for some δ1 and δ2 suitable constants, we obtain

δ1e
δλn = δ2n

Therefore,
λn = E(N1,n) = c0log(δ3n),

where c0 = 1
δ

and δ3 = δ2
δ1

. This leads to our main result E(N1,n)

logn
→ c0 as n→∞.

Similarly, it can be shown that E(N0,n)

logn
→ c1, a positive constant under H1.

4. TABLES OF SIMULATION

In this section, we provide simulation results to observe the limiting values of E(N1,n)

logn
for large n

and to support our main result in section 3. We implement Procedure III in testing composite
hypothesis of our interest in section 2 for different pairs of (p0, p1) in the case of Bernoulli trials and
for different pairs of (µ0, µ1) in the context of N(µ, 1) populations.

For each (p0, p1) pair and each total sample number n, we apply Procedure III using some
simulation technique and iterate 500 times. We compute probability of correct selection (PCS) as
proportion of correct decision among 500 trials. Tables 1, 2, and 3 include simulated results for
different pairs of (p0, p1) and n in Bernoulli set up. Simulated results for different (µ0, µ1) pairs
and n in normal set up are shown in tables 4 and 5. In the 4th and 8th column of each table, we
include estimated limiting values of E(N1,n)

logn
for large n with some consideration of standard error in

simulation. However, these estimates are obtained by averaging 10 individual estimates to further
increase the precision. In this simulation study, we note that the samples assigned to the medicine
with lower value of p or µ tends to a positive constant when divided by logarithm of the total sample
number.

At the beginning of each of the 500 loops, we start with fixed, constant, equal values of N0,n

and N1,n depending on the total sample number so that the small constant values do not affect the
asymptotic properties. At each stage of application of Procedure III, we take the usual maximum
likelihood estimate of p and µ.

Remark. From Lemma 5.1 in the appendix, an approximate upper bound of V (N1,n) is E(N1,n)(1+

δ) for small δ > 0. In the tables of section 4, the estimates of E(N1,n)

logn
, denoted as

̂E(N1,n)

logn
, are obtained

from 5000 iterations. The standard deviation of
̂E(N1,n)

logn
is given in percentage as

√
V
[ ̂E(N1,n)

logn

]
E(N1,n)

logn

 100% =


√

V (N1,n)

5000

E(N1,n)

 100%

Hence, an approximate upper bound of the standard deviation of the estimates in percentage would

be
√

(1+δ)
5000E(N1,n)

100%. This implies that an approximate upper bound of the standard error of

estimates of E(N1,n)

logn
is less than 1%. Such an upper bound helps to get an idea about the limiting

values of the quantities as n tends to ∞.

7



4.1. Tables of Binomial Simulation

Table 1: Simulated results for Bernoulli probability pairs (p0, p1)=(0.7, 0.4) and (p0, p1)=(0.65, 0.45)

pair n PCS E(N1,n)/logn pair n PCS E(N1,n)/logn

(0.7, 0.4) 25 0.98 3.10834 (0.65, 0.45) 30 0.83 3.25786
30 0.97 2.97910 55 0.92 3.40195
35 0.96 2.89738 90 0.95 3.42370
40 0.98 2.80564 110 0.97 3.51814
50 0.99 2.66729 130 0.98 3.52644
55 0.99 2.62035 150 0.98 3.39577
65 0.99 2.50487 170 0.99 3.41673
75 0.99 2.41565 190 0.99 3.33941
80 0.99 2.39041 220 0.99 3.27872
90 0.99 2.33294 250 0.99 3.33849
100 0.99 2.26462 300 0.99 3.35803
110 0.99 2.21267 400 0.99 3.26250
120 0.99 2.17687 500 0.99 3.35967

Table 2: Simulated results for Bernoulli probability pairs (p0, p1)=(0.7, 0.5) and (p0, p1)=(0.65,0.5)

pair n PCS E(N1,n)/logn pair n PCS E(N1,n)/logn

(0.7, 0.5) 30 0.84 3.23979 (0.65, 0.5) 30 0.84 3.24419
40 0.87 3.37006 40 0.88 3.33386
55 0.91 3.48199 75 0.95 3.44253
90 0.95 3.47010 90 0.95 3.50518
100 0.99 3.54686 100 0.96 3.50990
110 0.96 3.55521 110 0.97 3.42913
130 0.98 3.49544 130 0.98 3.52382
140 0.97 3.53382 140 0.98 3.46321
150 0.98 3.54348 160 0.98 3.52186
160 0.98 3.47132 170 0.99 3.39444
170 0.99 3.42871 180 0.98 3.30910
180 0.99 3.44402 200 0.98 3.46892
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Table 3: Continuation of table 2 for pairs (p0, p1)=(0.7, 0.5) and (p0, p1)=(0.65, 0.5)

pair n PCS E(N1,n)/logn pair n PCS E(N1,n)/logn

(0.7, 0.5) 190 0.99 3.41115 (0.65, 0.5) 220 0.99 3.47242
200 0.99 3.40578 250 0.99 3.23987
220 0.99 3.33686 275 0.99 3.30053
250 0.98 3.52462 300 0.99 3.22519
275 0.99 3.35387 350 0.99 3.15934
300 0.99 3.22278 400 0.99 3.26372
400 0.99 3.27865 500 0.99 3.25120

4.2. Tables of Normal Simulation

Table 4: Simulated results for normal mean pairs (µ0, µ1)=(0.7,0.3) and (µ0, µ1)=(0.8,0.2)

pair n PCS E(N1,n)/logn pair n PCS E(N1,n)/logn

(0.7, 0.3) 25 0.96 3.12819 (0.8, 0.2) 25 0.99 3.10122
30 0.92 3.04883 30 0.98 2.94865
40 0.91 3.07554 35 0.98 2.83686
55 0.94 3.08183 40 0.98 2.76555
75 0.97 3.08618 45 0.99 2.70059
90 0.95 3.16842 50 0.96 2.66852
100 0.97 3.15280 55 0.97 2.65765
110 0.97 3.16917 60 0.97 2.61195
120 0.97 3.20783 65 0.98 2.57846
130 0.97 3.20319 70 0.99 2.53912
140 0.97 3.20208 75 0.99 2.51435
150 0.97 3.22822 80 0.97 2.49531
160 0.97 3.24329 85 0.97 2.48463
170 0.97 3.31301 90 0.98 2.47081
180 0.98 3.30345 95 0.99 2.44051
190 0.98 3.11181 100 0.99 2.41974
200 0.97 3.31959 110 0.99 2.39976
220 0.97 3.28628 120 0.99 2.34502
250 0.97 3.47673 150 0.99 2.24720
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Table 5: Simulated results for normal mean pairs (µ0, µ1)=(1.5,1.0) and (µ0, µ1)=(1.35,0.9)

pair n PCS E(N1,n)/logn pair n PCS E(N1,n)/logn

(1.5, 1.0) 25 0.99 3.03449 (1.35, 0.9) 30 0.94 2.99894
30 0.95 2.97259 35 0.93 2.96149
35 0.94 2.88975 40 0.94 2.92653
40 0.97 2.83314 45 0.96 2.92784
45 0.98 2.78061 50 0.93 2.91960
50 0.95 2.76179 55 0.96 2.87731
55 0.96 2.76310 60 0.95 2.89460
60 0.97 2.73026 65 0.96 2.92048
65 0.98 2.71349 70 0.98 2.89782
70 0.99 2.71426 75 0.98 2.85128
75 0.99 2.62937 80 0.96 2.86837
80 0.97 2.66634 85 0.96 2.85865
85 0.98 2.59304 90 0.97 2.87939
90 0.98 2.64287 95 0.98 2.90915
95 0.99 2.63393 100 0.98 2.87150
100 0.99 2.55961 110 0.98 2.84377
110 0.99 2.57603 120 0.98 2.81239
120 0.99 2.56636 150 0.99 2.80481
150 0.99 2.50198 200 0.99 2.79036

5. APPENDIX

We have used the following results in previous sections.

Lemma 5.1. Under H0, with the previously stated Procedure III for composite hypotheses for large
values of n, E(N1,n)(1 + δ) ≥ V (N1,n) with small δ > 0.

Proof. Define,

Xi =

{
1 if θ̂0,i − θ̂1,i < 0 at ith trial
0 o.w.

Therefore, N1,n = X1 +X2 + · · ·+Xn. For j > i, consider the distribution of
(Xi, Xj) | X1, · · · , Xi−1, Xi+1, · · · , Xj−1. Let us assume (X1, · · · , Xi−1, Xi+1, · · · , Xj−1) ∼ f
and consider n is large and also i, j are large with i, j ≥M .
Following is the 2× 2 table for the joint distribution of (Xi, Xj) :

xi�xj 0 1 total
0 a b 1− (c+ d)
1 c d c+ d

total 1− (b+ d) b+ d 1

where a = P (Xi = 0, Xj = 0), b = P (Xi = 0, Xj = 1), c = P (Xi = 1, Xj = 0),
and d = P (Xi = 1, Xj = 1).
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We have PICSn = P ((θ̂0,n−θ0)− (θ̂1,n−θ1) < θ1−θ0). Clearly, as N1,n decreases V ar((θ̂0,n−θ0)−
(θ̂1,n−θ1)) increases which implies increase in PICSn as well. This statement is justified by property

(iii) of θ̂ and Lemma 2.1. θ̂0,n and θ̂1,n are functions of the order statistics of the relevant samples.
Now, if Xi changes from 1 to 0, i.e., upto (j−1)th trial N1,n decreases, then Xj = 1 is more likely to
occur in the next trial than Xj = 0. So, it is obvious that P (Xi = 1, Xj = 0) ≥ P (Xi = 0, Xj = 0),
i.e., c ≥ a. Similarly, b ≥ d.

Now, from the contingency table we have, E(XiXj) = d, E(Xi) = c+d, and E(Xj) = b+d.
Therefore,

E(Xi)E(Xj)− E(XiXj) = (c+ d)(b+ d)− d = bc− ad ≥ 0

i.e., Cov(Xi, Xj) ≤ 0. Hence,

V (N1,n) ≤ (1 + δ)
n∑
k=1

V (Xk)

≤ (1 + δ)
n∑
k=1

E(Xk
2)

= (1 + δ)
n∑
k=1

E(Xk)

= (1 + δ)E(N1,n).

This holds for large values of n as we assumed in the beginning of the lemma.

Lemma 5.2. Under H0 for large n, N0,n and N1,n both tend to infinity implies PICSn → 0.

Proof. Under H0, PICSn ' EN0,n,N1,n

{
Φ

(
(θ1−θ0)√
c0

N0,n
+

c1
N1,n

)}
(see proof of Theorem 3.1).

Now, under H0,
(θ1−θ0)√
c0

N0,n
+

c1
N1,n

→ −∞ as n→∞, which implies

EN0,n,N1,n

Φ

 (θ1 − θ0)√
c0
N0,n

+ c1
N1,n

| N0,n, N1,n

→ 0 as n→∞

i.e., PICSn → 0 as n→∞.
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