Course

M476 - Lie Algebras

Course No: 
M476
Credit: 
4
Prerequisites: 
M202
Approval: 
2014
UG-Elective
Syllabus: 
Definitions and Examples, Derivations, Ideals, Homomorphisms, Nilpotent Lie Algebras and Engel’s theorem, Solvable Lie Algebras and Lie’s theorem, Jordan decomposition and Cartan’s criterion, Semisimple Lie algebrasCasimir operator and Weyl’s theorem, Representations of sl(2, F ), Root space decomposition, Abstract root systems, Weyl group and Weyl chambers, Classification of irreducible root systems, Abstract theory of weights, Isomorphism and conjugacy theorems, Universal enveloping algebras and PBW theorem, Representation theory of semi-simple Lie algebras, Verma modules and Weyl character formula.
Reference Books: 
  1. J. E. Humphreys, “Introduction to Lie Algebras and Representation Theory”, Graduate Texts in Mathematics 9, Springer-Verlag, 1978.
  2. K. Erdmann, M. J. Wildon, “Introduction to Lie Algebras”, Springer Undergraduate Mathematics Series, Springer-Verlag, 2006.
  3. J.-P. Serre, “Complex Semisimple Lie Algebras”, Springer Monographs in Mathematics, Springer-Verlag, 2001.
  4. N. Jacobson, “Lie Algebras”, Dover Publications, 1979.

Contact us

School of Mathematical Sciences

NISERPO- Bhimpur-PadanpurVia- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

Corporate Site - This is a contributing Drupal Theme
Design by WeebPal.