Course

M471 - Advance Number Theory

Course No: 
M471
Credit: 
4
Prerequisites: 
M207
Approval: 
2014
UG-Elective
Syllabus: 
Review of Finite fields, Gauss Sums and Jacobi Sums, Cubic and biquadratic reciprocity, Polynomial equations over finite fields, Theorems of Chevally and Warning, Quadratic forms over prime fields. Ring of p-adic integers, Field of p-adic numbers, completion, p-adic equations, Hensel’s lemma, Hilbert symbol, Quadratic forms with p-adic coefficients. Dirichlet series: Abscissa of convergence and absolute convergence, Riemann Zeta function and Dirichlet L-functions. Dirichlet’s theorem on primes in arithmetic progression. Functional equation and Euler product for L-functions. Modular Forms and the Modular Group, Eisenstein series, Zeros and poles of modular functions, Dimensions of the spaces of modular forms, The j-invariant L-function associated to modular forms, Ramanujan τ function.
Reference Books: 
  1. J.-P. Serre, “A Course in Arithmetic”, Graduate Texts in Mathematics 7, Springer-Verlag, 1973.
  2. K. Ireland, M. Rosen, “A Classical Introduction to Modern Number Theory”, Graduate Texts in Mathematics 84, Springer-Verlag, 1990.
  3. H. Hasse, “Number Theory”, Classics in Mathematics, Springer-Verlag, 2002.
  4. W. Narkiewicz, “Elementary and Analytic Theory of Algebraic Numbers”, Springer Monographs in Mathematics, Springer-Verlag, 2004.
  5. F. Q. Gouvˆea, “p-adic Numbers”, Universitext, Springer-Verlag, 1997.

Contact us

School of Mathematical Sciences

NISERPO- Bhimpur-PadanpurVia- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

Corporate Site - This is a contributing Drupal Theme
Design by WeebPal.