Course

M458 - Algebraic Number Theory

Course No: 
M458
Credit: 
4
Prerequisites: 
M207
Approval: 
2014
UG-Elective
Syllabus: 
Number Fields and Number rings, prime decomposition in number rings, Dedekind domains, Ideal class group, Galois theory applied to prime decomposition, Gauss reciprocity law, Cyclotomic fields and their ring of integers, finiteness of ideal class group, Dirichlet unit theorem, valuations and completions of number fields, Dedekind zeta function and distribution of ideal in a number ring.
Reference Books: 
  1. D. A. Marcus, “Number Fields”, Universitext, Springer-Verlag, 1977.
  2. G. J. Janusz, “Algebraic Number Fields”, Graduate Studies in Mathematics 7, American Mathematical Society, 1996.
  3. S. Alaca, K. S. Williams, “Introductory Algebraic Number Theory”, Cambridge University Press, 2004.
  4. S. Lang, “Algebraic Number Theory”, Graduate Texts in Mathematics 110, Springer-Verlag, 1994.
  5. A. Frohlich, M. J. Taylor, “Algebraic Number Theory”, Cambridge Studies in Advanced Mathematics 27, Cambridge University Press, 1993.
  6. J. Neukirch, “Algebraic Number Theory”, Springer-Verlag, 1999.

Contact us

School of Mathematical Sciences

NISERPO- Bhimpur-PadanpurVia- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

Corporate Site - This is a contributing Drupal Theme
Design by WeebPal.