Course

M451 - Advanced Complex Analysis

Course No: 
M451
Credit: 
4
Prerequisites: 
M308
Approval: 
2014
UG-Elective
Syllabus: 
Review of basic Complex Analysis: Cauchy-Riemann equations, Cauchy’s theorem and estimates, power series expansions, maximum modulus principle, Classification of singularities and calculus of residues. Space of continuous functions, Arzela’s theorem, Spaces of analytic functions, Spaces of meromorphic functions, Riemann mapping theorem, Weierstrass Factorization theorem, Runge’s theorem, Simple connectedness, Mittag-Leffler’s theorem, Analytic continuation, Schwarz reflection principle, Mondromy theorem, Jensen’s formula, Genus and order of an entire function, Hadamard factorization theorem, Little Picard theorem, Great Picard theorem, Harmonic functions.
Reference Books: 
  1. L. V. Ahlfors, “Complex Analysis”, Tata McGraw-Hill, 2013.
  2. J. B. Conway, “Functions of One Complex Variable II”, Graduate Texts in Mathematics 159, Springer-Verlag, 1996.
  3. W. Rudin, “Real and Complex Analysis”, Tata McGraw-Hill, 2013.
  4. R. Remmert, “Theory of Complex Functions”, Graduate Texts in Mathematics 122, Springer, 2008.

Contact us

School of Mathematical Sciences

NISERPO- Bhimpur-PadanpurVia- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

Corporate Site - This is a contributing Drupal Theme
Design by WeebPal.