Course

M301 - Lebesgue Integration

Course No: 
M301
Credit: 
4
Prerequisites: 
M201
Approval: 
2014
UG-Core
Syllabus: 
Outer measure, measurable sets, Lebesgue measure, measurable functions, Lebesgue integral, Basic properties of Lebesgue integral, convergence in measure, differentiation and Lebesgue measure. L p Spaces, Holder and Minkowski inequalities, Riesz-Fisher theorem, Radon-Nykodin theorem, Riesz representation theorem. Fourier series, L 2 -convergence properties of Fourier series, Fourier transform and its properties.
Text Books: 
  1. H. L. Royden, “Real Analysis”, Prentice-Hall of India, 2012.
  2. G. B. Folland, “Real Analysis”, Wiley-Interscience Publication, John Wiley & Sons, 1999.
Reference Books: 
  1. G. de Barra, “Measure Theory and Integration”, New Age International, New Delhi, 2003.
  2. W. Rudin, “Principles of Mathematical Analysis”, Tata McGraw-Hill, 2013.

Contact us

School of Mathematical Sciences

NISERPO- Bhimpur-PadanpurVia- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

Corporate Site - This is a contributing Drupal Theme
Design by WeebPal.